LightAct 4 Docs
LightAct WebpagePDF Version
  • LightAct 4 Documentation
  • Understanding the Basics
    • Overview of Content Pipeline
    • Pushing Content out of LightAct
    • Terminology
    • How to map Content
      • Creating a Canvas
      • Creating a Layer
      • Creating a Video Screen
      • Mapping a Canvas to a Video screen
      • Creating a Perspective Thrower
      • Using Nodes to Set Content
      • Mapping to Outputs
    • Working quickly in LightAct
      • Window docking & workspaces
      • Drag & drop
      • Viewport Navigation
      • Shortcuts
    • Launching LightAct with Arguments
    • Top Bar
    • LightAct Performance
  • Transitioning to LightAct from other media servers
    • Switching to LightAct
    • LightAct for Disguise Operators
      • GUI Overview
      • Content Sequencing
      • Content Mapping
      • Projection Mapping
    • LightAct for Pixera Operators
  • Content mapping
    • Canvas mapping
    • Throwers
      • Thrower Properties
      • Perspective Thrower
      • Cubic thrower
      • Spherical Thrower
    • 3D model
      • Rendering Mode
      • Multiple materials & sources
      • Preparing 3D Models
        • Organize the 3D Scene
        • Materials in 3D models
        • UV Mapping of 3D Models
      • Outputting 3D Model's Texture
  • TIMELINES
    • Overview
    • Timelines Window
    • Timeline Editor Window
      • Sections
      • Markers
      • Curve Editor
    • Cues
      • Cue List
  • LAYERS AND LAYOUTS
    • Overview
    • Stock Layer Templates
      • Content Layer Templates
        • Video
      • Generative Layer Templates
        • Checkerboard
        • Color grid
        • Gradient
        • Mapping ID
        • Render Time
        • Scroll Texture
        • Send Texture
        • Solid Color
        • Strobe
        • Text
        • Texture to Mapping
      • Control Layer Templates
        • Go to Marker
        • Go to Section
        • Receive message
        • Send DMX
        • Send message
        • Set Fade
        • Set Timeline State
        • Set Volume
    • Layers
      • Layer Properties
      • Layer Layouts
      • Cross-fade
    • User Layer Templates
    • Variables
      • Variable Management
      • Control Variables with DMX, OSC, or Curves
    • Nodes
      • Node Connections
      • Node Action Flow
      • Order of Node Execution
      • Texture Processing
        • LUT
        • Luma Key
        • Rotate
      • Computer Vision
        • Optical Flow
        • Find Blobs
        • Mog2 Background Subtraction
        • Combine
        • Convert CV Color
        • Subtract
  • Node reference
    • Node reference
    • Layout nodes
      • Lifeline and actions node category
        • Tick node
      • Texture generators node category
    • Device nodes
  • Content Playback
    • Video Formats & Codecs
    • Playing Video
    • Playing Image Sequences
    • Images
    • Playing Notch Blocks
  • Projection Mapping
    • Projection Mapping
    • Projection Study
    • 2D Projection Mapping Workflow
    • 3D Projection Mapping Workflow
    • 3DCal
    • Iris
      • Setting up Iris Device Node
      • Adjusting Focus
      • Adding and calibrating Iris camera
      • Calibrating projectors using Iris
      • IrisVirtual
    • AutoBlend
    • Warp & Blend
      • Texture Warp & Blend node
      • Texture Mesh Warp node
      • Texture Perspective Warp node
      • Texture Softedge node
      • Warp & Blend Output Window
    • Texture Mask
  • DMX
    • DMX Overview
    • DMX Setup
    • DMX Out
      • Fixture Editor
      • Output to DMX Fixture
      • Set DMX in Layer Layouts
    • DMX In
      • Adjust layer variables with DMX
      • Index manager
      • Get DMX in Layer Layouts
      • Control by DMX
    • DMX by UV
  • Unreal Engine
    • Unreal Engine Integration Overview
    • Required Unreal Engine Plugins
      • Installing LightAct Plugin
      • Setting up the Plugin
        • LightAct Runtime Actor
        • LightAct Custom Time Step
        • LightAct Timecode
    • UnrealLink
    • Texture Sharing
      • Thrower2UCam
      • Projector2UCam
      • ViewportUCam
  • Integrations
    • Camera and object tracking
      • Camera Tracking
        • Stype
        • Mo-Sys
        • FreeD
        • Ncam
        • SPNet
      • Object Tracking
        • PSN
        • BlackTrax
        • OptiTrack
        • Vive
        • Antilatency
      • Tracking Visualizer
      • Tracking Follower
    • Network
      • TCP & UDP
      • OSC
        • OSCLearn
      • TUIO
    • Serial
      • MIDI
    • Audio
    • Content IO
      • NDI
      • Deltacast
        • FLEX Management
      • ZED
      • RealSense
    • OSCIn
    • 10-Bit Displays
  • LightTrack
  • LightNet
    • LightNet Overview
    • LightNet Clusters
      • Scan Network
      • Connect to Secondary Machines
      • Transfer and Open Project
      • Cluster Management
    • LightNet Performance
      • Canvas Distribution
      • Layer Distribution
      • Asset Distribution
      • Viewport Object Distribution
      • VRAM Improvements
    • LightSync
  • WebUI
    • WebUI Setup
  • GPU Management
    • EDID Management
      • Export EDID
      • Load EDID
      • Unload EDID
    • Synchronize GPU Outputs
    • Multiple GPUs
      • Mosaic
        • Set up Mosaic
        • Modify or Disable Mosaic
      • Primary Display
      • Workflow
    • DisplayPort - HDMI converters
  • Licensing
    • Licensing Overview
    • Adding or updating a License
    • Applying a License
    • Transferring a License
  • Troubleshooting
    • Iris Troubleshooting
    • Unreal Engine Integration Troubleshooting
      • Texture Sharing Troubleshooting
    • LightNet Troubleshooting
    • Notch Troubleshooting
    • GPU Management Troubleshooting
    • Asking for support
Powered by GitBook
On this page

Was this helpful?

  1. Projection Mapping

Projection Study

PreviousProjection MappingNext2D Projection Mapping Workflow

Last updated 1 year ago

Was this helpful?

If you are using a multi-server setup, please note that Projection Study can only be run on the Primary machine.

Projection Study is a feature which helps you determine the number of projectors your project might need, along with their location, orientation, resolution and brightness.

  1. Place all objects you would like to project content on into the Viewport.

  2. Add as many projectors to the Viewport as you estimate would cover your project's needs. Place the projectors in appropriate locations and change their Properties as you consider fitting.

  3. Map the objects you have placed on the Viewport to the projectors.

In our case, we have a single 3D car model which is mapped on 5 separate projectors.

To use this feature, click on Tools in the Top Bar and choose Projection Study.

A window will appear, where you can select the projectors and objects you would like analyze.

Projection Study has four modes which you can find in the Setup section:

  • Projected content shows exactly what the projection is going to look like.

  • Shadow analysis helps you determine which areas of your model are not getting any light.

  • In Illuminance mode you can adjust the lux scale so it fits your project setup.

  • Pixel size is very useful for detecting pixel stretching. You can do this through observing the pixel grid outputted on all of your projected objects.

Select the wanted mode and click on the Enable button.

Good to know: Once you enable Projection Study, you should see a tag on the upper left side of the Viewport. In this setup, only the objects and projectors you have chosen to analyze will appear in the Viewport.

The results can be visualized in both Projected content and Illuminance modes.

From this point on, the idea is to adjust the projectors' position, location, resolution or brightness to get the best possible results.

The other key purpose of projection studies is to analyze blending. You can blend your projectors by using feature.

Autoblend